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Abstract—This research implements U-Net and
DeepLabV3 MobileNetV3 deep learning image segmentation
models to investigate the effectiveness of image augmentation
techniques on the Diabetic Foot Ulcer 2022 dataset [1].
Evaluation of the best models is performed using dice loss
and intersection-over-union metrics. The model showed
improvements in both metrics, showing that methods such as
rotation, flipping and cropping can increase the latter from
0.6931 to 0.7340 by basic implementation.

Index Terms—Image augmentation, medical imaging, deep
learning, neural networks, segmentation

I. INTRODUCTION

Diabetic Foot Ulcers (DFU) are a typically chronic disease
that can lead to extremity amputation and are a major cause for
concern within the NHS. Overall, about 5% of patients with
diabetes mellitus develop foot ulcers and 1% end up with an
amputation [2].

With an estimated 50% mortality rate after 5 years [3], on-
going research for classification and segmentation of wounds
using deep learning can contribute to decreasing diagnosis
time and preventing wounds from progressing to latter stages
of disease.

This project focuses on augmentation techniques leading
to improved accuracy in wound segmentation models for
purposes including accurate wound localisation, quantitative
wound measurement, wound tissue classification and wound
healing monitoring.

II. PROJECT PROTOTYPE

A full project prototype for implementation of this research
can be found on the GitHub link below (preferred).

https://github.com/christianmcb/Deep-Learning-Project/

An example of the main project notebook running in Google
colab is also available on:

https://colab.research.google.com/drive/1eEYf
OWKfS1folXeuDpSoNepA87EhZG6?usp=sharing

III. RELATED WORK

Researchers have been working on developing models that
can be used to predict labels for image segmentation tasks,
such as U-Net [4], SegNet [5], V-Net [6] and more. These
models are examples of convolutional neural networks that are

similar in structure and strategy with alterations to account for
differences in feature depth within the images. This makes ev-
ery image segmentation task unique and the research potential
for finding the best models and techniques a significant task.

Prior works on this specific dataset focus on enhancing
the model configurations such as replacing the decoder in
HarDNet-MSEG for increased accuracy [7]; or studying loss
function impact on the models potential [8].

Perhaps the most interesting of research for DFU on the
analysis of augmentation methods is the proposal of a refined
mix-up augmentation technique proposed by Hresko et al. [9],
who studied the effects of mixing images within the training
set and improved the dice similarity coefficient (DSC) from
0.6530 to 0.6713.

Many of these methods use additional image augmentation
techniques, but little evaluation and statistical analysis has
been provided on the effects of them individually and col-
lectively to improve model scores. This potential gap forms
the basis of this project.

IV. METHODOLOGY

A. Dataset and Groud Truth

The DFUC2022 dataset has been approved for use by the
UK National Health Service (NHS) with images supplied by
Lancashire Teaching Hospitals for the purposes of research;
and provided in coalition with Manchester Metropolitan Uni-
versity [1].

The dataset comprises of 2000 images for training and
validation, of size 640x480 (WxH) and aspect ratio 1.333 (see
Table I.

Channels Height Width Label Size (% of Total)

count 2000.0 2000.0 2000.0 2000.000000
mean 3.0 480.0 640.0 0.023663
std 0.0 0.0 0.0 0.036806
min 3.0 480.0 640.0 0.000298
25% 3.0 480.0 640.0 0.004366
50% 3.0 480.0 640.0 0.010367
75% 3.0 480.0 640.0 0.026339
max 3.0 480.0 640.0 0.347518

TABLE I: Descriptive statistics of training data.

Examples from the dataset choosing images from the small-
est 1% label sizes (row 1), middle 5% (row 2) and largest %

https://github.com/christianmcb/Deep-Learning-Project/
https://colab.research.google.com/drive/1eEYf_OWKfS1folXeuDpSoNepA87EhZG6?usp=sharing
https://colab.research.google.com/drive/1eEYf_OWKfS1folXeuDpSoNepA87EhZG6?usp=sharing
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(row 3) are shown in Figure 1. Note that examples from the
smallest label size are difficult to predict with the naked eye,
and may require specialist review to be diagnosed. This may
make it difficult for a model to predict.

Fig. 1: Sample images from the DFUC2022 dataset.

Ground Truth Labels
From Table I, mask annotations have a large range in the
training data, suggesting models need adaptability to be able
to make accurate predictions. Figure 2 shows the distribution
of label sizes within the training data, with a large amount of
data positively skewed.

Fig. 2: Distribution of label sizes.

B. Segmentation Models

U-Net Architecture
U-Net is a convolutional neural network designed for biomed-
ical image segmentation. Consisting of a contracting path to
capture context and a symmetric expanding path to enable
precise localisation [4].

Fig. 3: Visual representation of the U-Net model architecture
[4].

The up-sampling strategy for implementing the U-Net
model in this project includes an encoding block with two 2D
convolutions (kernel size 3), two x batch normalisation, ReLU
activation and max pooling, whereas the down-sampling strat-
egy reverses up-sampling by applying the same transformation
backwards. U-Net uses skip connections to copy some of the
data from the encoding block and retain some of the spatial
information lost in up-sampling, increasing the accuracy in
segmentation tasks.

U-Net can be adapted to capture more or less significant
information by including more or less encoding/decoding
blocks, depending on the specific task at hand, however deeper
models require more time to train.

U-Net is a large deep learning model with many parameters
due to the skip connections and additional layers in the
decoding path [10], making it computationally expensive and
prone to over-fitting.

DeepLabV3 MobileNetV3 Architecture
MobileNetV3 is the backbone architecture for this model, and
uses an inverted residual block consisting of 2D convolutional
layers to increase the number of channels, a batch normali-
sation layer to normalise and rescale the output and a ReLU
activation function to limit computational cost increasing ex-
ponentially [11].

The backbone uses 2x 2D convolutional layers and 15
inverted residual blocks as part of the up-sampling process,
increasing the number of channels from 3 to 960 iteratively.

DeepLabV3 introduces the idea of atrous convolutions [12],
which build on the convolutions that might be seen in models
such as U-Net by establishing a new parameter; rate r, that, to
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put simply, spaces out the kernels and allow them to look at
larger areas of the images, without increasing the calculation
size [13]. It is used to classify the output from MobileNetV3
to provide a prediction of the mask. Consisting of 2x 2D
convolutional layers, 3x ASPP (atrous) convolutional blocks
(increased stride and dilation to convolutional layers) and 1x
Atrous Spatial Pyramid Pooling (ASPP) block to capture a
broader range of features.

The DeepLabV3 architecture reduces the number of chan-
nels from the output of the MobileNetV3 encoder from 960 to
a single output channel, corresponding to the label prediction.

C. Loss Function

Every deep learning model requires a loss function to
monitor how well the model is performing on the training
data, with the goal of updating model weights and minimising
loss.

Sigmoid Activation
The Sigmoid activation function is important for the prediction
of binary segmentation masks such as in this project. Binary
masks contain values in the range (0, 1), however predictions
can easily fall outside of this range, hindering the calculation
and effectiveness of loss functions and exaggerating predic-
tions of outliers.

Model predictions can be transformed using the formula in
Equation 1.

σ(x) =
1

1 + exp(−x)
(1)

where, x =predicted pixel value.
Dice Loss

Dice Loss as a loss function in deep learning models for
medical imaging was first introduced by Milletari et al. [14]
and has recently been utilised in many variations to increase
accuracy in image segmentation. Other loss functions such
as cross entropy loss calculate the per pixel loss and fail
to acknowledge whether the correctly predicted pixels are
boundaries or not [15].

It can be calculated for binary instances; predicting a single
class, as shown in Equation 2. With the values of the label
between 0 and 1, dice loss requires a sigmoid function which
transforms the predictions to this range.

D = 1−
2
∑N

i pi,jgi,j∑N
i pi,j + gi,j

(2)

where, pi,j = model output and gi,j = label.

BCE With Logits Loss
Binary cross entropy loss (BCE Loss) uses the predicted values
as probabilities that the pixel is either 1 or 0 (wound or not)
and calculates the total log loss by comparison.

The formula for calculating log loss is shown in Equation
3 [16].

ln = −wn[yn · log σ(xn) + (1− yn) · log(1− σ(xn))]
(3)

l(x, y) = mean (L{l1, l2, ..., lN})

where, N = batch size, yn = label and xn = predicted
probability of the pixel belonging to the wound.

Working with binary masks of 0 and 1 requires the predic-
tion to form a probability between this range, therefore BCE
With Logits Loss combines a Sigmoid function to transform
the predictions accordingly.

D. Optimiser

In neural networks, the aim of the optimiser is to update the
weights of the model such that the loss function is minimised
efficiently.

Given a vector of input variables (image) x = {x1, ..., xN}
and the actual outputs (label) y = {y1, ..., yN}, the goal is
to find a model that maps x to a function f(x) such that the
residuals (loss) between x and y is at it’s lowest [17].

Stochastic Gradient Descent
Gradient descent initially provides a function of independent
variables V = {v1, ..., vr}, that are the variables to be updated
by the algorithm shown below. The weights are updated by a
fraction of the derivative, called the learning rate γ, to ensure
the gradient descent isn’t excessive and the model converges
to the minimum point. It is important to tune the learning rate
parameter so that the model converges quickly to the minimum
point.

∇V =

(
∂V

∂v1
, ...,

∂V

∂vr

)
Vn ← Vn−1 − γ · ∇Vn−1 (4)

Stochastic Gradient Descent (SGD) is a variation of the
gradient descent algorithm in Equation 4, where the gradient
is only calculated for a small number of the observations.
This will reduce the computation time per epoch, however
the model may then require a higher number of epochs to
converge. Therefore, this may reduce the total computation
time.

Adam
Adam is another optimiser based on gradient descent, however
introduces new variables into Equation 4 to help with faster
convergence. The first moment estimation mn (initially 0),
tracking the exponential moving averages of the gradient,
allowing for more accurate variable updates and faster con-
vergence. The second moment estimation sn (initially 0),
tracks the moving average of the squared gradients (uncentered
variance) and helps the optimiser adapt the learning rates of
individual parameters during the learning process [18].
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mn = β1 ·mn−1 + (1− β1) · ∇Vn−1

sn = β2 · sn−1 + (1− β2) · (∇Vn−1)
2

m̂n =
mn

1− βn
1

ŝn =
sn

1− βn
2

Vn ← Vn−1 −
γ · m̂n√
ŝn + ϵ

(5)

where ϵ is an small adjustment (default 1e−8) to avoid division
by 0 when ŝn is 0.

E. Image Augmentation Techniques

This section introduces the image augmentation techniques
that have been used throughout the experiments in this project.

Image augmentation methods artificially create new data
within existing data by transforming the images in order to
improve generalisation of deep learning models to unseen
data. For example, shifting or rotating the wound may help
the model increase accuracy of similar wounds that exist in a
different location than the existing wound.

A downside to image augmentation can be that it takes
longer for the model to train, which can be undesirable if
the data is very large.

Albumentations [19] is an image augmenta-
tion/transformation library that contains the algorithms
for implementing the augmentations outlined in this section.
The implementation for each of the following takes a
parameter p which is the probability that the image is
transformed.

Examples of the image augmentation techniques in practice
can be found in Figure 4.

Flipping
Flipping is of the most basic of the augmentation methods
and requires flipping the image around the x-axis or the y-
axis. Equation 6 is for flipping horizontally, and 7 vertically.

dsti,j = srci,src.cols−j−1 (6)

dsti,j = srcsrc.rows−i−1,j (7)

Rotation
The formula for rotating an image by a given angle is shown
by the matrix multiplication in Equation 8.

dsti,j = srci,j ·
[

α β (1 − α) · center.x − β · center.y
−β α β · center.x + (1 − α) · center.y

]
(8)

where, α = cos(angle) and β = sin(angle).

Cropping
Cropping the image is simplified once the bounds have been
initialised, that is, minimum and maximum values of i and j
to be included in the crop, then either remove the outer values
and resize the image, or pad the outer values with a discrete
value, such as 1.

if (xmin < i < xmax)&(ymin < j < ymax)]:
xi,j = xi,j

else:
xi,j = 1

For this project, the image then needs to be resized so that
it can be read by the model correctly during training.

Gaussian Noise
Applying random Gaussian noise to the images in the training
set can again help with the generalisation of the model.

dsti,j = srci,j + νi,j (9)

where ν = normally distributed random variable with mean
µ and variance σ2.

Coarse Dropout
With similar intuition to that of using Gaussian noise, coarse
dropout also introduces noise to the data, by adding a number
of ”holes” to the image, again helping the model to generalise
to unseen data.

It works by using a random number generator to choose
the number of holes to apply (up to parameter ”max holes”),
and then the position of the holes on the image, and fills the
selected pixels in the range of the holes with a discrete value
such as 1.

Brightness Contrast
The Random Brightness Contract augmentation changes the
brightness of the image by a certain value m, this may help
the model to generalise to varying lighting conditions.

dstI = lut(srcI) (10)

where dst = output, src = input and lut is a look-up table
transform based on the input array provided by OpenCV.

Elastic Transformation
In affine transformations such as shifting and rotating, pixels
xi,j , i and j are transformed in the same direction so the
resulting image is visually similar in a changed position.

Elastic transformations take a different approach and trans-
forms the pixels in different directions based on a set of
parameters [20], using a Gaussian filter (smoothing) to keep
the characteristics of the image intact.

This transformation increases epoch iteration time by 5-6x
in comparison to other transformations included, which is to be
considered when choosing an augmentation strategy to apply.

F. Experimental Setup

Training and Validation Sets
Given the full training data of 2,000 images and mask labels,
to validate the results of the segmentation models, the data has
been split into training and validation sets of 1,600 and 400
images respectively. This can be achieved using Sk-Learn’s
feature ”train test split”, which will randomly split the data
into train and validation sets for training models effectively.
The dataset used for this project has already been split into
training and validation sets as part of the Grand Challenge,
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Fig. 4: Examples of image augmentation techniques.

and in line with this challenge, it is important to keep the
same validation sets so results can be compared.

Evaluation Metrics
In order to compare models, experimental setup must in-
clude an evaluation metric. In this project, working with the
intersection-over-union (IOU), which can be calculated using
Equation 11.

IOU =
x ∩ y

x ∪ y
(11)

where x is the predicted label values and y the actual label
values.

Device Specification
The model has been built using Python (version 3.9.16),
PyTorch (version 1.12.1) and CUDA version 11.6. Full envi-
ronment setup and project prototype can be found on GitHub
found in Section II. The GPU used for training and testing
the models in this project is the NVIDIA Quadro P5000 with
16GB RAM.

V. EXPERIMENTS

A. Initial Experiments and Model Tuning

In order to carry out the image augmentation experiments
to find most effective techniques for the DFUC2022 dataset.
First, the best performing models based on loss function,
optimiser, batch size, and learning rate are identified.

Dice Loss vs BCE With Logits Loss
The Dice Loss function outperforms BCE with Logits Loss
marginally and should be selected based on the results in Table
II.

Model Optimiser Batch Size Loss Function Epochs Train IOU Val IOU

UNet Adam 16 Dice Loss 48 0.7495 0.6099
UNet Adam 16 BCEWithLogits 48 0.8318 0.5980

TABLE II: Results from loss function comparison.

SGD vs ADAM
Following the results of the optimiser experiments, Adam has
been chosen as the best optimiser with results shown in Table
III, converging at a faster rate and with better generalisation
to the unseen data.
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Model Optimiser Batch Size Epoch Train IOU Val IOU

Deep Lab Adam 16 21 0.9119 0.6931
Deep Lab SGD 16 23 0.7236 0.6083

TABLE III: Results from SGD and Adam optimisers.

Best Batch Size
Using a batch size of 16 provides the best performing model
whilst converging quickly, showing that the model can learn
from a larger batch size and retain the information. Larger
batch sizes are preferred where there is no drop in metric, and
16 is the largest batch size that the GPU can deal with due to
memory constraints.

Model Optimiser Batch Size Loss Function Epoch Train Loss Train IOU Val Loss Val IOU

Deep Lab Adam 16 Dice Loss 21 0.0469 0.9119 0.1844 0.6931
Deep Lab Adam 4 Dice Loss 18 0.0868 0.8471 0.2136 0.6629
Deep Lab Adam 8 Dice Loss 38 0.0476 0.9114 0.2108 0.6613
Deep Lab Adam 2 Dice Loss 17 0.1078 0.8149 0.2451 0.6375

TABLE IV: Results from batch size optimisation.

Learning Rate Tuning
The learning rate (LR) is a variable weight that controls the
rate at which the model parameters are updated each iteration
(or epoch). Optimising the learning rate for the optimiser is
not a task involving the best model based on the evaluation
metric IOU. Instead, look to find the LR that descends to the
lowest point fastest, without converging or diverging.

It is optimal to use a larger batch size with a higher LR if
model accuracy is not sacrificed by doing so.

Fig. 5: Training and validation loss by learning rate.

Figure 5 shows the trajectory of the training and validation
losses as the model iterates through a number of epochs. Large
fluctuations in validation losses such as in plot ”LR=0.001”
suggest LR is large, whereas the validation losses following
the training losses closely, ”LR=0.0001”, suggest a low LR.
The true optimal LR is in the middle ”LR=0.0005”.

U-Net vs DeepLab
DeepLabV3 MobileNetV3 clearly outperforms this imple-
mentation of the U-Net model as shown in Table V, and
also converges at a much faster rate, making it ideal for this
problem.

Model Optimiser Batch Size Epoch Train IOU Val IOU

Deep Lab Adam 16 21 0.9119 0.6931
UNet Adam 16 48 0.7495 0.6099

TABLE V: Results of U-Net vs Deep Lab

B. Selected Model and Augmentation Experiments

Selected Model
After initial experiments to find optimal model and parameters,

the selected variables for image augmentation experiments are
shown in Table VI.

Parameter

Model DeepLabV3 MobileNetV3
Batch Size 16

Max Epochs 1000
Early Stopping 15 Epochs

Initial LR 0.0005
Scheduler Reduce on Plateau

Scheduler Factor 0.5
Scheduler Patience 5

Loss Function Dice Loss
Evaluation Batch IOU

TABLE VI: Selected model specification.

Augmentation Experiments
Using the model specification in Table VI, experiments were
run by altering the image augmentation techniques outlined in
Section IV-E on the training set.

The models are evaluated by the batch validation IOU and
evaluated individually in section VI.

VI. RESULTS AND DISCUSSION

Results of Image Augmentation
Table VII shows a clear improvement on the average validation
loss and IOU metrics for a range of image augmentation
methods, proving that techniques such as rotation, flipping,
cropping and elastic transformation have a positive impact on
the generalisation of the models on unseen data.

Interestingly, the training loss on the baseline model reaches
as low as 0.0467, showing that the model has started to over-fit
with its best performance on the validation data. In contrast,
when applying transformations, the model has a higher training
loss yet has higher validation IOU and lower validation loss,
confirming the improved generalisation.

Building the Best Model
Once the most effective image augmentation techniques have
been discovered, Table VIII shows how these methods work
together in improving the overall model compared with the
baseline. With IOU being the most robust evaluation metric
for medical imaging segmentation, the increase from 0.6931
to 0.7340 should be considered large.

Augmentation Epoch Train Loss Train IOU Val Loss Val IOU P-Value

Best Model 61 0.1003 0.8170 0.1587 0.7340 0.0134
None 21 0.0467 0.9119 0.1844 0.6931 Baseline

TABLE VIII: Results of the best performing model.

In order to compare the means of the two model evaluations
on the validation set, use a non-parametric test as the results
are not normally distributed, such as the Mann-Whitney U Test
for difference in means.

Using the baseline and best models to predict individual
images in the validation set, run the statistical test at the 5%
significance level where:
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Augmentation Parameters Probability Epoch Train Loss Train IOU Val Loss Val IOU

None - Baseline None 1.0 21 0.0467 0.9119 0.1844 0.6931

Rotate Limit = 90 0.5 24 0.0971 0.8264 0.1653 0.7236
Shift Scale Rotate 0.5 25 0.0780 0.8572 0.1688 0.7158

Vertical Flip 0.5 24 0.0725 0.8670 0.1689 0.7156
Crop And Pad Percent=(-0.3x0.05) 0.5 31 0.0784 0.8537 0.1737 0.7094

Elastic Transform 0.5 25 0.0744 0.8627 0.1745 0.7071
Horizontal Flip 0.5 22 0.0632 0.8826 0.1762 0.7060
Crop And Pad Percent=0.5 0.5 32 0.0691 0.8717 0.1771 0.7018

Coarse Dropout Max Holes=50, H8W8 0.5 20 0.0546 0.8971 0.1824 0.6987
Gaussian Noise Var=(10x50) 0.5 16 0.0783 0.8571 0.1851 0.6967
Gaussian Noise Var = (100x5000) 0.5 25 0.1094 0.8052 0.1838 0.6945
Coarse Dropout MaxHoles=8, H(8)W(8) 0.5 21 0.0463 0.9117 0.1844 0.6917

Random Brightness Contrast 0.2 20 0.0505 0.9045 0.1884 0.6903

TABLE VII: Results of individual image augmentation techniques on training and validation metrics.

• H0: The distribution of values predicted by the baseline
are not less than the best predictions.

• H1: The distribution of values predicted by the baseline
are less than the best predictions.

Since the P-Value of 0.0134 is less than 0.05, there is
sufficient evidence to reject the null hypothesis and conclude
that the best model is statistically better than the baseline
model for the validation data.

Predictions Evaluation
It is clear from visualising some of the predictions such as in
Figure 6 that the best model using image augmentation can
better localise the wound in both small and large ulcerations,
creating better versatility and generalisation to new data,
confirming the results in Table VIII.

Validation of Best Model
In order to validate the results of the best model, build it
again using the same augmentation techniques, however split
an extra 200 images into a testing set. Therefore, this time
there are 1,200 images for training, 400 for validation and
200 for testing.

Model Epoch Train IOU Val IOU Test Loss Test IOU

Best Model 31 0.7902 0.7189 0.2177 0.6598
Baseline 21 0.9168 0.6998 0.2183 0.6496

TABLE IX: Results of validation with 200 test images.

The results of the validation test are not as clear, showing
smaller differences in the test loss and IOU as shown in Table
IX, therefore more analysis would be needed to confirm that
this experiment is statistically significant.

VII. CONCLUSION

The results of this research support the use of image aug-
mentation methods such as rotation, shifting, scaling, flipping,
cropping and elastic transforms in the segmentation of medical
images, with improved model results. Further works would
need to be carried out to properly validate these results if
time constraints were not an issue. In order to further validate

the results, more data would help greatly, including the use
of the testing set available on the Grand Challenge website.
Training the best and baseline models on the full training data
and consequently validating with this test data could produce
improved models.

There are also many more augmentation methods available
to be experimented with, and also the opportunity to explore
new creations of augmentation techniques.
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